Therapy options

This application helps to propose an appropriate fertility therapy method and to find the most suitable clinic worldwide based on the price, duration and legislative options of the treatment in various countries.

Search Results

Nothing found. Please try searching for a different keyword.

Self therapy does not exist.

Microsurgery of blocked tubes

Microsurgery of blocked tubes is a treatment option for women whose tubes were blocked by tubal ligation (Pic. 1) and with this procedure they can be rejoined again. 

Microsurgical tubal reanastomosis (a reconnection between two things) can be used to restore fertility by rejoining the separated segments of the Fallopian tube which was blocked by tubal ligation (a surgical procedure for sterilization in which a woman's fallopian tubes are clamped and blocked). 

In this process, the area of the tubes which was occluded is removed, leaving only open, healthy tube. These open, healthy, tubal segments are then connected. A multi layer, micro surgical technique is used to suture these segments together. 

After the tubes are repaired, a chromopertubation (a procedure usually done during a laparoscopy to visualize the fallopian tubes in order to see if they are patent or open) is performed wherein dye is injected into the uterus. This dye is passed through the repaired tubes to ensure that the tubes are open. 

The entire surgery is performed through a small incision of about 3 to 4 inches just at the uppermost part of the hair line.

Pharmacotherapy of infections

Antibiotics are drugs that are used in the treatment or prevention of bacterial infections. Strictly speaking, antibiotics are natural substances produced by micro-organisms as opposed to semi-synthetic or synthetic antibiotics, also called chemotherapeutics, which are either natural substances artificially modified or totally human created respectively. An important quality for an antimicrobial drug is selective toxicity, meaning that it selectively kills or inhibits the growth of microbial targets while causing minimal or no harm to the host. Each class of antibacterial drugs has a unique mode of action (the way in which a drug affects microbes at the cellular level, Pic. 1).

Antibacterial drugs can be either bacteriostatic or bactericidal in their interactions with target bacteria.

  • Bacteriostatic drugs cause a reversible inhibition of growth, with bacterial growth restarting after elimination of the drug.
  • By contrast, bactericidal drugs kill their target bacteria

The decision of whether to use a bacteriostatic or bactericidal drugs depends on the type of infection and the immune status of the patient. In a patient with strong immune defenses, bacteriostatic and bactericidal drugs can be effective in achieving clinical cure. However, when a patient is immunocompromised (with a weaker immunity than healthy individuals) a bactericidal drug is essential for the successful treatment of infections. Regardless of the immune status of the patient, life-threatening infections such as acute endocarditis (inflammation of the innermost layer of heart wall) require the use of a bactericidal drug.


For the optimum treatment of some infections, two antibacterial drugs may be administered together to provide a synergistic interaction (more pronounced effect) that is better than the efficacy of either drug alone. A classic example of synergistic combinations is trimethoprim and sulfamethoxazole (Bactrim). Individually, these two drugs provide only bacteriostatic inhibition of bacterial growth, but combined, the drugs are bactericidal.

The principles of effective antibiotic/chemotherapeutic treatment are the following:

  1. Rational choice of preparation according to clinical and bacteriologic diagnosis.
  2. Optimal dosage, way and interval between drug using.
  3. Beginning of therapy as soon as possible before destructive changes of organs.
  4. If the clinical improvements after 2-3 days course are absent, the agent must be changed.
  5. The therapy have been continued 2-3 days after the clinical symptoms disappear.
  6. Chemotherapy should be performed with other remedies that enforce the immunity.

The route of administration, the method used to introduce a drug into the body, is also an important consideration for drug therapy. Drugs that can be administered orally are generally preferred because patients can more conveniently take these drugs at home. However, some drugs are not absorbed easily from the gastrointestinal (GI) tract into the bloodstream. Some drugs that are not absorbed easily, such as bacitracin, polymyxin, and several antifungals, are available as topical preparations for treatment of superficial skin infections. Sometimes, patients may not initially be able to take oral medications because of their illness (e.g., vomiting, intubation for respirator). When this occurs, and when a chosen drug is not absorbed in the GI tract, administration of the drug by a parenteral route (intravenous or intramuscular injection) is preferred and typically is performed in health-care settings. For most drugs, the plasma levels achieved by intravenous administration is substantially higher than levels achieved by oral or intramuscular administration, and this can also be an important consideration when choosing the route of administration for treating an infection.

Pharmacotherapy of partial tube blockage

Pharmacotherapy of partial tube blockage can be used in women, which have blocked only one Fallopian tube and the remaining one is otherwise healthy and capable of ovulating. 

The main drugs, which is using to help increasing the likelihood that woman will ovulate and become pregnant, is Clomifene.

Clomifene (previously clomiphene) is an orally administered, non steroidal, ovulatory stimulant. Clomifene is capable of interacting with estrogen-receptor-containing tissues, including the hypothalamus, pituitary, ovary, endometrium (the inner functional layer of the uterus) , vagina, and cervix.

The first endocrine event in response to a course of clomifene therapy, is an increase in the release of pituitary gonadotropins. This initiates the production of steroids and the production of follicles resulting in growth of the ovarian follicle and an increase in the circulating level of estradiol. Following ovulation, plasma progesterone and estradiol rise and fall as they would in a normal ovulatory cycle. Clomifene can lead to multiple ovulation, and hence increasing the risk of twins. 

The following procedures may be used to monitor induced cycles: 

  • Follicular monitoring with vaginal ultrasound, starting 4–6 days after last pill. Serial transvaginal ultrasound can reveal the size and number of developing follicles.
  • Serum estradiol levels, starting 4–6 days after last pill.
  • Post-coital test 1–3 days before ovulation to check whether there are at least 5 progressive sperm per high-power field (HPF).
  • Adequacy of lutenizing hormone (LH) surge by urine LH surge tests 3 to 4 days after last clomifene pill.
  • Mid-luteal progesterone, with at least 10 ng/ml 7–9 days after ovulation being regarded as adequate.

It is not recommended by the manufacturer to use clomifene for more than 6 cycles.

Tubal reversal surgery

Tubal reversal surgical treatment is a surgery that's straighten out by women for a number of reasons. Some are to have fertility restored after having tubes tied (tubal ligation), to possess a tubal ligation reversed because of religious convictions as well as for relief of Post Tubal Ligation Syndrome (abnormal bleeding and/or pain, changes in sexual behavior and emotional health, increased premenstrual distress). In some cases, however, the separated segments cannot actually be reattached to each other. In some cases the remaining segment of tube needs to be reimplanted into the uterus (a "tubal reimplantation"). In other cases, when the end of the tube (the "fimbria") has been removed, a procedure called a neofimbrioplasty must be performed to recreate a functional end of the tube which can then act like the missing fimbria and retrieve the egg that has been released during ovulation.

Tubal reversal surgeries require the techniques of microsurgery to open and reconnect the fallopian tube segments that remain after a tubal sterilization, reimplant remaining segments, or create new fimbria.

Tubotubal anastomosis

Following a tubal ligation, there are usually two remaining fallopian tube segments - the proximal (close) tubal segment that emerges from the uterus and the distal (far) tubal segment that ends with the fimbria next to the ovary. After opening the blocked ends of the remaining tubal segments, a variety of microsurgical techniques are utilized to recreate a functional tube. The newly created tubal openings are drawn next to each other by placing sutures in the connective tissue that lies beneath the fallopian tubes (mesosalpinx). The retention suture prevents the tubal segments from pulling apart while the tube heals. Microsurgical sutures are used to precisely align the tubal lumens (inside canal of tube), the muscular portion (muscularis externa), and the outer layer (serosa) of the tube. Most surgeons try to avoid the use of stents which can damage the delicate cilia that line the tube and create the flow of fluid that is needed to push the egg and embryo into the uterus. Other surgeons use a narrow flexible stent to gently thread through the tubal segments or into the uterine cavity in order to line up the tubes in order to reconnect them. In either case, once the microsurgical repair is completed dye is injected through the cervix into the uterus and out through the tubes to ensure that the fallopian tube is open from the uterine cavity to its fimbrial end. The surgeons who use stents then gently withdraw them from the fimbrial end of the tube after the repair is completed.

Tubal reimplantation

In a small percentage of cases, a tubal ligation procedure leaves only the distal (far) portion of the fallopian tube and no proximal (close) tubal segment. This can occur when any method of tubal ligation has been applied to the isthmic segment of the fallopian tube as it emerges from the uterus. In this situation, a new opening can be created through the uterine muscle and the remaining tubal segment inserted into the uterine cavity. This microsurgical procedure is called tubal reimplantation.

Neofimbrioplasty

Fimbriectomy is a very uncommon type of tubal ligation that is performed by removing the end (fimbria) of the fallopian tube leaving only the tubal segment attached to the uterus. After fimbriectomy, if the remaining tubal segment is long enough, the end of the tube can be opened and "new" fimbria can be created by a procedure called a neofimbrioplasty. These "new" fimbria are not actually fimbria, but they are the cilia from the inside of the fallopian tube that have been exposed by everting the tubal lumen much like the petals of a rose are exposed once the rose blooms. These "new" fimbria are much less effective at collecting (catching) an egg that has been released from the ovary than the real fimbria that had been removed during the fimbriectomy performed by the surgeon who did the original tubal ligation. During a neofimbrioplasty the tubal end is opened and folded back (marsupialized) so that the tubal end remains open and exposing the internal lining of the tube.

Mini-laparotomy tubal reversal

Mini-laparotomy for tubal reversal surgery involves making a small, 2 to 3 inch (5 to 7.5 cm) incision in the abdominal wall just above the pubic bone after shaving the hair with a sterile hair clipper. The size and location of the incision as well as the plastic surgery techniques used to close it make the thin scar nearly invisible after it has healed. Atraumatic surgical techniques involve the use of local anesthesia at the incision site and other tissues operated upon. This makes the surgery comfortable and minimizes post-operative pain. As opposed to standard operative methods, avoiding the use of surgical retractors and packs, constantly irrigating tissues to keep them moist and at body temperature, and operating under magnification throughout the procedure results in very rapid patient recovery. Operating with microsurgical instruments allows precision in suturing of the tubal segments.

Microsurgical tubal reanastomosis 

In this process, the area of the tubes which was occluded is removed, leaving only open, healthy tube. These open, healthy, tubal segments are then connected. A multilayer, micro surgical technique is used to suture these segments together. After the tubes are repaired, a chromopertubation is performed wherein dye is injected into the uterus. This dye is passed through the repaired tubes to ensure that the tubes are open. The entire surgery is performed through a small incision of about 3 to 4 inches (7.5 to 10 cm) just at the uppermost part of the hair line. It is very important to note that either failing to properly align the tubal segments, or damaging these delicate structures, can make the difference between a successful and an unsuccessful operation

Laparoscopic tubal reversal

Laparoscopic tubal reversal is a minimally-invasive surgical procedure (laparoscopy), using small, specially-designed instruments to repair and reconnect the fallopian tubes.
After general anesthesia has been administered, a 5mm tube (trocar) is inserted inside the navel, and a special gas is pumped into the abdomen to create enough space to perform the operation safely and precisely. The laparoscope (a telescope), attached to a camera, is brought into the abdomen through the same tube, and the pelvis and abdomen are thoroughly inspected. The fallopian tubes are evaluated and the obstruction (ligation, burn, ring, or clip) is examined. Three small instruments are used to remove the occlusion and prepare the two segments of the tube to be reconnected.

Once the connection (anastomosis) is completed, a blue dye is injected through the cervix, traveling through the uterus and tubes, all the way to the abdomen. This is to make sure the tubes have been aligned properly and that the connection is working well.

Robotic assisted tubal reversal

Robotic tubal ligation reversal uses the same small incisions as a traditional laparotomy tubal reversal surgery. Smaller incisions generally result in less pain and quicker return to work when compared to traditional tubal ligation reversal using larger abdominal incisions. The robotic system offers a greater range of motion and more surgical dexterity than a surgeon can obtain during laparoscopic tubal ligation reversal, but not as much dexterity as with an open procedure using a 2 to 3 inch incision (5 to 7.5 cm). The disadvantages to robotic surgery are longer operating times and much higher costs than even traditional laparoscopic surgery.

Essure sterilization reversal

Essure sterilization is a tubal occlusion procedure that was approved by the FDA (The Food and Drug Administration ) in 2002. The Essure procedure involves inserting a small camera (hysteroscope) through the cervix and into the uterine cavity. Two small, metallic coils are then inserted into each tubal ostia and into the isthmic portion of the fallopian tube. The coils cause the isthmic portion of the fallopian tube to be blocked with scar tissue. To confirm tubal closure, a hysterosalpingogram should be performed three months after the Essure procedure. If either fallopian tube is open after the Essure procedure, then the Essure procedure can be repeated or another type of tubal occlusion method can be performed.

Reversal of Essure sterilization requires the blocked isthmic portion of the tube be bypassed by tubouterine implantation as described above.

Adiana sterilization reversal

Adiana sterilization is a hysteroscopic tubal occlusion procedure, which is very similar to Essure sterilization. The Adiana procedure involves inserting a small camera (hysteroscope) through the cervix and into the uterine cavity. A smaller catheter is inserted into the tubal ostia. The catheter emits radiowaves (microwaves). The radiowaves cause injury to the tubal lining and will result in the tube gradually closing. Prior to removal of the catheter a small silicone stent is left inside the isthmic portion of the tube and this promotes tubal closure by the acceleration of the tubal scarring.

Egg donation

Egg donation is the process by which a woman donates eggs for purposes of assisted reproduction or biomedical research. For assisted reproduction purposes, egg donation typically involves IVF technology, with the eggs being fertilized in the laboratory; more rarely, unfertilized eggs may be frozen and stored for later use. Egg donation is a third party reproduction as part of ART.

Egg donor may have several reasons for donate her eggs:

  • Unrelated donors to the recipients – they do it for altruistic and/or monetary reasons. The European Union limits any financial compensation for donors to at most $1500. In some countries, most notably Spain and Cyprus, this has limited donors to the poorest segments of society. In US, donors are paid regardless of how many egg she produces. In most countries (excluding the US and the UK), the law requires such type of donors to be anonymous.
  • Egg sharing – the woman decides to provide unused egg from her own IVF for another patient.
  • Designated donors – couple bring their friend or the donor specifically to help them.

Procedure

First step is choosing the egg donor by a recipient from the profiles on or clinic databases (or, in countries where donors are required to remain anonymous, they are chosen by the recipient's doctor based on recipient woman’s desired trait). This is due to the fact that all of the mentioned examinations are expensive and the agencies/clinics must first confirm that a match is possible or guaranteed before investing in the process. 

Each egg donor is first referred to a psychologist who will evaluate if she is mentally prepared to undertake and complete the donation process. These evaluations are necessary to ensure that the donor is fully prepared and capable of completing the donation cycle in safe and success manner. The donor is then required to undergo a thorough medical examination, including a pelvic exam, blood tests to check hormone levels and to test for infectious diseases, Rh factor, blood type, and drugs and an ultrasound to examine her ovaries, uterus and other pelvic organs. A family history of approximately the past three generations is also required, meaning that adoptees are usually not accepted because of the lack of past health knowledge. Genetic testing is also usually done on donors to ensure that they do not carry mutations (e.g., cystic fibrosis) that could harm the resulting children; however, not all clinics automatically perform such testing and thus recipients must clarify with their clinics whether such testing will be done. During the process, which usually takes several months, the donor must abstain from alcohol, sexual intercourse, cigarettes, and drugs, both prescription and non-prescription.

Once the screening is complete and a legal contract signed, the donor will begin the donation cycle, which typically takes between three and six weeks. An egg retrieval procedure comprises both the egg donor's cycle and the recipient's cycle. Birth control pills are administered during the first few weeks of the egg donation process to synchronize the donor's cycle with her recipient's, followed by a series of injections which halt the normal functioning of the donor's ovaries. These injections may be self-administered on a daily basis for a period of one to three weeks. Next, FSH is given to the donor to stimulate egg production and increases the number of mature eggs produced by the ovaries. Throughout the cycle the donor is monitored often by a physician using blood tests and ultrasound exams to determine the donor's reaction to the hormones and the progress of follicle growth.

Once the doctor decides the follicles are mature, the doctor will establish the date and time for the egg retrieval procedure. Approximately 36 hours before retrieval, the donor must administer one last injection of hCG to ensure that her eggs are ready to be harvested. The egg retrieval itself is a minimally invasive surgical procedure lasting 20-30 minutes, performed under sedation (but sometimes without any). A small ultrasound-guided needle is inserted through the vagina to aspirate the follicles in both ovaries, which extracts the eggs. After resting in a recovery room for an hour or two, the donor is released. Most donors resume regular activities by the next day.

Laws by state

The legal status and compensation of egg donation has several models across states with examples:

  • Totally illegal procedure (Italy, Germany, Austria, Costa Rica, Sunni Muslim countries, Bahrain, Egypt, Hong Kong, Lebanon, Lithuania, Maldives, Norway, Oman, Pakistan, Philippines, Qatar, Saudi Arabia, Syria, Tajikistan, Turkey, Yemen),
  • Legal, no compensation, anonymous donor (France),
  • Legal, no compensation, non-anonymous donor (Canada),
  • Legal, possible compensation, anonymous donor (Spain, Czech Republic, South Africa),
  • Legal, possible compensation, non-anonymous donor (the UK),
  • Legal, possible compensation, anonymous or non-anonymous (the US).

See full description of Egg donation

ICSI

During ICSI just one sperm is injected directly into the egg cytoplasm using a micromanipulative apparatus that transforms imperfect hand movements into fine and precise movements of micromanipulation tools.

Intracytoplasmic Sperm Injection (ICSI) is an assisted reproductive technique (ART) initially developed by Dr. Gianpiero D. Palermo in 1993 to treat male infertility. It is most commonly used in conjunction with in vitro fertilization (IVF). Following IVF procedure, the physician places the fertilized egg into the female’s uterus for implantation. Sperm are obtained by the same methods as with IVF: either through masturbation, by using a collection condom, or by surgically removing sperm from a testicle through a small incision (MESA, TESE). The females are treated with fertility medications for approximately two weeks prior to oocyte retrieval to stimulate superovulation, where the ovaries produce multiple oocytes rather than the normal one oocyte. The oocytes are retrieved by either laparoscopy, or more commonly, transvaginal oocyte retrieval. In the latter procedure, the physician inserts a thin needle through the cervix, guided by a sonogram and pierces the vaginal wall and then the ovaries to extract several mature ova. Before the embryologist can inject the sperm into the oocyte, the sperm must be prepared by washing and exposing it to various chemicals to slow the sperm movement and prevent it from sticking to the injection plate. Also, the oocytes are treated with hyaluronidase to single out the oocyte ready for fertilization by the presence of the first polar body. Then, one prepared sperm is injected into an oocyte with a thin needle. Often, embryologists try to fertilize several eggs so they can implant more than one into the uterus and increase the chance of at least one successful pregnancy. This also allows them to save extra embryos, using cryopreservation, in case later IVF rounds are needed.

After the embryologist manually fertilizes the oocytes, they are incubated for sixteen to eighteen hours and develop into a pronucleate eggs (successfully fertilized eggs about to divide into an embryo). The egg then grows for one to five days in the laboratory before the physician places it in the female’s uterus for implantation.

The chance of fertilization increases dramatically with ICSI compared to simply mixing the oocytes and sperm in a Petri dish and waiting for fertilization to occur unaided (classical IVF procedure). Studies have shown that successful fertilizations occur 50% to 80% of the time. Since the introduction of ICSI, intrauterine insemination (IUI) has decreased in popularity by 80%.

See full description of ICSI

Sperm donation

Sperm donation is the donation by a male (known as a sperm donor) of his sperm (known as donor sperm), principally for the purpose of inseminating a female who is not his sexual partner. Sperm donation is a form of third party reproduction including sperm donation, oocyte donation, embryo donation, surrogacy, or adoption. Number of births per donor sample will depend on the actual ART method used, the age and medical condition of the female bearing the child, and the quality of the embryos produced by fertilization. Donor sperm is more commonly used for artificial insemination (IUI or ICI) than for IVF treatments. This is because IVF treatments are usually required only when there is a problem with the female conceiving, or where there is a “male factor problem” involving the female's partner. Donor sperm is also used for IVF in surrogacy arrangements where an embryo may be created in an IVF procedure using donor sperm and this is then implanted in a surrogate. In a case where IVF treatments are employed using donor sperm, surplus embryos may be donated to other women or couples and used in embryo transfer procedures. 

On the other hand, insemination may also be achieved by a donor having sexual intercourse with a female for the sole purpose of initiating conception. This method is known as natural insemination.

The donation
Donor sperm and fertility treatments using donor sperm may be obtained at a sperm bank or fertility clinic. Here, the recipient may select donor sperm on the basis of the donor's characteristics, e.g. looks, personality, academic ability, race, and many other factors. Sperm banks or clinics may be subject to state or professional regulations, including restrictions on donor anonymity and the number of offspring that may be produced, and there may be other legal protections of the rights and responsibilities of both recipient and donor. Some sperm banks, either by choice or regulation, limit the amount of information available to potential recipients; a desire to obtain more information on donors is one reason why recipients may choose to use a known donor and/or private donation.

A sperm donor will usually donate sperm to a sperm bank under a contract, which typically specifies the period during which the donor will be required to produce sperm, which generally ranges from 6–24 months depending on the number of pregnancies which the sperm bank intends to produce from the donor. Donors may or may not be paid for their samples, according to local laws and agreed arrangements. Even in unpaid arrangements, expenses are often reimbursed. Depending on local law and on private arrangements, men may donate anonymously or agree to provide identifying information to their offspring in the future. Private donations facilitated by an agency often use a "directed" donor, when a male directs that his sperm is to be used by a specific person. Non-anonymous donors are also called known donors, open donors or identity disclosure donors.

Donor selection
A sperm donate must generally meet specific requirements regarding age (most often up to 40) and medical history. Potential donors are typically screened for genetic diseases, chromosomal abnormalities and sexually transmitted infections that may be transmitted through sperm. The donor's sperm must also withstand the freezing and thawing process necessary to store and quarantine the sperm. Samples are stored for at least 6 months after which the donor will be re-tested for sexually transmitted infections. This is to ensure no new infections have been acquired or have developed during the period of donation. If the result is negative, the sperm samples can be released from quarantine and used in treatments.

Screening includes:

  • Taking a medical history of the donor, his children, siblings, parents, and grandparents etc. for three to four generations back. This is often done in conjunction with the patient’s family doctor.
  • HIV risk assessment interview, asking about sexual activity and any past drug use.
  • Blood tests and urine tests for infectious diseases, such as: HIV-1/2, HTLV-1/2, Hepatitis B and C, Syphilis, Gonorrhea, Chlamydia, Cytomegalovirus (CMV), not all clinics test for this.
  • Blood and urine tests for blood typing and general health indicators: ABO/Rh typing, CBC, liver panel and urinalysis
  • Complete physical examination including careful examination of the penis, scrotum and testicles.
  • Genetic testing for carrier traits, for example: Cystic Fibrosis, Sickle-cell disease, Thalassemia, other hemoglobin-related blood disorders.
  • General health
  • Semen analysis for: sperm count, morphology, motility, acrosome activity may also be tested

Preparing the samples
A sperm donor is usually advised not to ejaculate for two to three days before providing the sample, to increase sperm count and to maximize the conception rate. A sperm donor produces and collects sperm by masturbation or during sexual intercourse with the use of a collection condom.

Sperm banks and clinics usually "wash" the sperm sample to extract sperm from the rest of the material in the semen. A cryoprotectant semen extender is added if the sperm is to be placed in frozen storage in liquid nitrogen, and the sample is then frozen in a number of vials or straws. One sample will be divided into 1-20 vials or straws depending on the quantity of the ejaculate and whether the sample is washed or unwashed. Following the necessary quarantine period, the samples are thawed and used to inseminate women through artificial insemination or other ART treatments. Unwashed samples are used for ICI treatments, and washed samples are used in IUI and IVF procedures.

Anonymity
Anonymous sperm donation occurs where the child and/or receiving couple will never learn the identity of the donor, and non-anonymous when they will. Non-anonymous sperm donors are, to a substantially higher degree, driven by altruistic motives for their donations.

Even with anonymous donation, some information about the donor may be released to the female/couple at the time of treatment. Limited donor information includes height, weight, eye, skin and hair color. In Sweden, this is all the information a receiver gets. In the US, on the other hand, additional information may be given, such as a comprehensive biography and sound/video samples.

Information made available by a sperm bank will usually include the race, height, weight, blood group, health, and eye color of the donor. Sometimes information about his age, family history and educational achievements will also be given.

Different factors motivate individuals to seek sperm from outside their home state. For example, some jurisdictions do not allow unmarried women to receive donor sperm. Jurisdictional regulatory choices as well as cultural factors that discourage sperm donation have also led to international fertility tourism and sperm markets.

Legal aspects
A sperm donor is generally not intended to be the legal or de jure father of a child produced from his sperm. Depending on the jurisdiction and its laws, he may or may not later be eligible to seek parental rights or be held responsible for parental obligations. Generally, a male who provides sperm as a sperm donor gives up all legal and other rights over the biological children produced from his sperm. However, in private arrangements, some degree of co-parenting may be agreed, although the enforceability of those agreements varies by jurisdiction.

Laws prohibits sperm donation in several countries: Algeria, Bahrain, Costa Rica, Egypt, Hong Kong, Jordan, Lebanon, Lithuania, Libya, Maldives, Oman, Pakistan, Philippines, Qatar, Saudi Arabia, Syria, Tajikistan, Tunisia, Turkey, UnitedArab Emirates, and Yemen. 

See full description of Sperm donation

Standard IVF

In vitro fertilization (IVF) is a process by which an egg is fertilised by sperm outside the body: in vitro . The process involves monitoring and stimulating a woman's ovulatory process, removing an ovum or ova (egg or eggs) from the woman's ovaries and letting sperm fertilise them in a liquid in a laboratory. The fertilised egg (zygote) is cultured for 2–6 days in a growth medium and is then implanted in the same or another woman's uterus, with the intention of establishing a successful pregnancy.

IVF techniques can be used in different types of situations. It is a technique of assisted reproductive technology for treatment of infertility. IVF techniques are also employed in gestational surrogacy, in which case the fertilised egg is implanted into a surrogate's uterus, and the resulting child is genetically unrelated to the surrogate. In some situations, donated eggs or sperms may be used. Some countries ban or otherwise regulate the availability of IVF treatment, giving raise to fertility tourism. Restrictions on availability of IVF include to single females, to lesbians and to surrogacy arrangements. Due to the costs of the procedure, IVF is mostly attempted only after less expensive options have failed.

The first successful birth of a "test tube baby", Louise Brown, occurred in 1978. Louise Brown was born as a result of natural cycle IVF where no stimulation was made. Robert G. Edwards, the physiologist who developed the treatment, was awarded the Nobel Prize in Physiology or Medicine in 2010. With egg donation and IVF, women who are past their reproductive years or menopause can still become pregnant. Adriana Iliescu held the record as the oldest woman to give birth using IVF and donated egg, when she gave birth in 2004 at the age of 66, a record passed in 2006.

See full description of Standard IVF

How can Fallopian tube blockage affect fertility

Tubal factor infertility accounts for nearly one-quarter of all cases of infertility. The fallopian tubes may be abnormal in structure or function. Structural disorders can block the fallopian tubes. They include tubal scarring or blockage most commonly from pelvic infections, prior abdominal surgeries and endometriosis. Practically, many gynecologists are reluctant when reporting on diagnostic laparoscopy. Some perform a single puncture intraumbilical procedure that neglects an auxillary portal for proper grasping of the adnexa and thorough evaluation of the ovarian fossa. Tubal pathologies may be responsible for primary and secondary infertility. The evaluation of the fallopian tube is necessary to determine the management plan of infertility. A number of diagnostic tests are being used in clinical practice to assess tubal patency as part of the work-up for subfertility.

See full description